TEORIA GRACELI DA TRANSFORMAÇÃO NO SDCTIE GRACELI


 TEORIA GRACELI DA TRANSFORMAÇÃO NO SDCTIE GRACELI.

TODA E QUALQUER FORMA DE TRANSFORMAÇÃO OCORREM CONFORME O SISTEMA SDCTIE GRACELI.


QUE SE FUNDAMENTA EM:


TODO E QUALQUER TIPO DE ESTRUTURA, E ENERGIA SE ENCONTRA EM TRANSFORMAÇÃO CONFORME O SDCTIE GRACELI




 A LÓGICA QUÂNTICA SDCTIE GRACELI SE FUNDAMENTA EM CINCO PILARES DA FÍSICA E FILOSOFIA DESENVOLVIDOS POR GRACELI.


QUE SÃO DEZ OU MAIS DIMENSÕES DE GRACELI, PODENDO CHEGAR A MAIS DE QUARENTA.

QUE SE FUNDAMENTA EM DIMENSÕES DA MATÉRIA E DIMENSÕES DE PROCESSOS FÍSICOS, QUÍMICO, E QUE TAMBÉM PODE SER ENVOLVIDO NA BIOLOGIA QUÂNTICA.

OU SEJA, NÃO SÃO DIMENSÕES DO ESPAÇO E TEMPO.


OU SEJA, TRATA DE CAPACIDADES ENVOLVENDO A MATÉRIA E AS ESTRUTURAS, COM SUAS INTERAÇÕES ENERGIAS, FENÔMENOS E ESTADOS FÍSICOS, TRANSICIONAIS E ESTADOS POTENCIAIS DE GRACELI.


CATEGORIAS DE GRACELI.


QUE TRATA DAS CATEGORIAS DE GRACELI.

QUE SÃO TIPOS, NÍVEIS OU INTENSIDADE OU QUANTIDADE, POTENCIAIS OU CAPACIDADES, E TEMPO DE AÇÃO, O TEMPO DE AÇÃO NÃO SEGUE UMA LINEARIDADE, OU SEJA, O TEMPO DE UM PROCESSO X NO INÍCIO, NÃO TEM OS MESMOS FENÔMENOS E INTENSIDADE NO TEMPO Y NO FINAL DE UM PROCESSO, ISTO EM TODAS AS ÁREAS DA FÍSICA E SEUS RAMOS, QUÍMICA E BIOLOGIA FÍSICA.


ESPAÇO E ESTADOS TRANSICIONAIS E POTENCIAIS DE GRACELI.


QUE TRATA DAS CONDIÇÕES E POTENCIALIDADES DE TRANSIÇÕES ENTRE ESTADOS E ESPAÇOS DE GRACELI, ASSIM, COMO SEUS POTENCIAIS [ESTADOS POTENCIAIS].



INTERAÇÕES .

QUE TRATA DO UNIVERSO DE INTERAÇÕES NO SISTEMA DE DIMENSÕES DE GRACELI.

E QUE ENVOLVE TAMBÉM INTERAÇÕES DE ESPAÇO E TEMPO, CAMPOS, ENERGIAS, E ESTRUTURAS ELETRÔNICAS, E OUTROS.


TRANSFORMAÇÕES.

ONDE AS TRANSFORMAÇÕES DETERMINAM O UNIVERSO DINÂMICO E VARIACIONAL DE TODO SISTEMA.

OU SEJA, TOO X SERÁ OUTRO X, NO TEMPO FUTURO, MESMO O TEMPO NÃO EXISTINDO COMO COISA EM SI. 

ONDE AS DIMENSÕES PODEM VARIAR DE DEZ ATÉ MAIS DE QUARENTA.




E QUE SE FUNDAMENTA NA FUNÇÃO GERAL:



TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.



FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

X
 [ESTADO QUÂNTICO]




TEORIA DO EFEITO LUZ SOBRE OBERVAÇÃO, E EFEITOS SOBRE VARIAÇÕES EM FENÔMENOS FÍSICOS. E OBSERVACIONAIS.

COMO EFEITO FOTOELÉTRICO E INCERTEZA, OU MESMO EXCLUSÃO. EMARANHAMENTOS E OUTROS.
E CONFORME O SDCTIE GRACELI.



EFEITO ELETROMAGNÉTICO SOBRE FENÔMENOS DENTRO DAS FÍSICAS, E QUÂNTICA, ONDAS , ESTADOS ESTACIONÁRIOS, QUÂNTICO, E CONFORME O SDCTIE GRACELI.

OU SEJA, A NATUREZA ELETROMAGNÉTICA DOS MATERIAIS ALTERAM A NATUREZA DOS FENÔMENOS, COMO TAMBÉM A TEMPERATURA, E QUANDO SOB PRESSÃO.
E CONFORME O SDCTIE GRACELI.


OU SEJA, SE TEM COM ISTO UM SISTEMA VARIACIONAL COM AS TRANSFORMAÇÕES, A ILUMINAÇÃO, E O ELETROMAGNETISMO.

COM ISTO FORMANDO UM SISTEMA TERMOELETRODINÂMICO QUÂNTCO SDCTIE GRACELI.


COM ISTO SE FORMA QUE TODAS A TERMODINÂMICA, ELETROMAGNETISMO, TEORIAS DE ONDAS E QUÂNTICA, E OUTRAS VARIAM CONFORME O SDCITE GRACELI.


E INCLUSIVE ALGUMAS QUE AINDA NÃO FORAM FORMULAS, OU SEJA, SURGIRÃO NO FUTURO.



É BOM RESSALTAR AQUI QUE NÃO EXISTE ABSOLUTAMENTE UMA RENORMALIZAÇÃO ABSOLUTA DENTRO DO SISTEMA SDCTIE GRACELI.


Numa teoria quântica de campos, a regularização de divergências e a renormalização são geralmente vistas apenas como técnicas para tornar funções de correlações finitas. Contudo, elas possuem um significado físico muito profundo e mais importante: a descrição de teorias quânticas de campos mudam conforme a escala de energia. Essa ideia foi introduzida por Kenneth Wilson[1] e é quantificada pelas equações do grupo de renormalização.

Grupo de renormalização no espaço de momentos

Suponha uma teoria quântica de campos com campos  e constantes de acoplamento  descrita pela ação clássica . Vamos considerar a expansão em modos de Fourier de 

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Usualmente, a integral é sobre todas as frequências . Neste caso, várias funções de correlação podem não ser bem definidas. Uma forma de regularizar a teoria é introduzir uma frequência de corte ultravioleta . Isto é, limitamos a integral ao disco

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Chamaremos esse campos de  e diremos que ele é o campo na escala . Então

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Também chamaremos a constante de acoplamento de . A função partição sobre os campos  é

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Já que alguns dos modos de Fourier estão faltando, o campo  é praticamente constante em distâncias menores que . Então, introduzir uma frequência de corte ultravioleta é o mesmo que introduzir um corte em pequenas distâncias. É óbvio que a introdução desse limite quebra a simetria de Poincaré. Eventualmente, vamos tomar o limite do contínuo , onde a simetria de Poincaré é recuperada. A questão de renormalizabilidade é se podemos fazer isso mantendo as quantidades físicas numa escala de energia finita  regulares.[2]

Vamos decompor a região de integração da expansão em modos em duas partes:

 e 
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Chamaremos as expansões em modos correspondentes por

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde B e A referem-se a Baixas e Altas energias. Nós gostaríamos de estudar o comportamento da teoria em energias menores que , por exemplo, amplitudes de espalhamento de partículas com momentos . O que procuramos então é uma ação que descreva esses efeitos somente em termos de . Ela pode ser obtida integrando sobre  na integral de trajetória, mantendo  variável

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Isso é chamado teoria de campos efetiva na energia . Por vezes, quando tomamos o limite para o contínuo , a expressão para a ação fica divergente e isso é a indicação que precisamos mudar a descrição da teoria em baixas energias. Nos casos mais drásticos, precisamos encontrar um novo conjunto completamente novo de campos e simetrias para descrever a teoria. Contudo, em muitos casos, a mudança de variáveis e parâmetros têm a forma:

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Aqui,  e  são os novos campos, em termos dos quais a ação efetiva

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


é regular no limite para o contínuo. Os campos  e as contantes  na escala de corte  são chamados de campos nus e constantes de acoplamentos nuas, enquanto  e  são ditas renormalizados.

Equação de Callan-Symanzik

Se pode olhar para essa mudança de campos e constantes de duas formas. Uma forma de ver é fixar  e variar . Nós fixamos os campos  e constantes de acoplamento  numa escala  (com os valores medidos nessa escala) e mudamos os campos nus  e as contantes nuas . Se pudermos mover  para o infinito sem mudar o comportamento do sistema na energia  (descrito por  e ), então, nesse limite, obtemos uma teoria quântica de campos com simetria de Poincaré.

Uma outra forma de ver é mover , fixando  e consequentemente  e . Desta forma, o campo renormalizado e a constante de acoplamento renormalizada é que mudam com a escala. Essa constante é dita constante de acoplamento corredora. Em particular, se mudamos a escala de  para , as constantes de acoplamento mudarão de  para , onde  é a inversa da função definida anteriormente. Com efeito, definindo um campo com contribuições dos modos de Fourier entre , podemos repetir o raciocínio e escrever . Desta forma, uma mudança de escala induz uma mudança das contantes de acoplamento através do campo vetorial

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Essa equação é chamada de equação de Callan-Symanzik[3] e o campo vetorial  é chamado função beta da constante de acoplamento .



Comentários

Postagens mais visitadas deste blog